Tuesday, April 5, 2011
Sunday, April 3, 2011
Kleines Lexikon der Strahlenmessung
Unidades para la medición de radiación
Quelle
Alpha-, Beta- und Gammastrahlen
Je größer der Atomkern eines chemischen Elements ist, desto instabiler ist er. Ab einer bestimmten Größe zerfallen Substanzen deshalb. Sie werden als radioaktiv bezeichnet. Die Zerfallsprozesse können unterschiedlicher Natur sein. Die Strahlung, die zerfallende Elemente aussenden, wird in drei Arten unterschieden: Während Alpha- und Betastrahlung aus Partikeln bestehen, handelt es sich bei Gammastrahlung um elektromagnetische Wellen, ähnlich der Röntgenstrahlung. Allerdings ist ihre Wellenlänge viel kleiner und die Strahlen sind somit extrem energiereich. Alphastrahlung besteht aus positiv geladenen Helium-Kernen, die aus zwei Protonen und zwei Neutronen aufgebaut sind. Betastrahlen bestehen aus Elektronen. Sie entstehen, wenn sich ein Neutron in ein Proton und ein Elektron umwandelt, das vom Atomkern abgestrahlt wird.
El Roentgen (R) es la medida de la carga eléctrica producida por las radiaciones X (ionización) o gamma depositada en aire seco en condiciones estándar. Definida como la carga eléctrica depositada por 1 gramo de radio-226 medido a una yarda de distancia en una hora, se sustituyó por la unidad X (C/kg) incluida en el sistema internacional de unidades, pero sin un nombre definido todavía, con lo que sigue siendo más popular para esta magnitud la unidad antigua.
El rad (acrónimo de radiation absorbed dose) es una unidad de dosis absorbida en términos de energía depositada en la materia. El rad se definió como una dosis absorbida de 100 ergios de energía por gramo de materia.
La unidad más reciente de la dosis absorbida, usada en el sistema internacional de unidades es el gray, que se define como 1 julio de energía depositada por kilogramo de materia. La equivalencia entre ambas unidades es de 1 Gy = 100 rad.
Para determinar el riesgo de la radiación se mide la "eficacia biológica relativa" de la radiación, obteniendo un factor de corrección (Q antes, RBE ahora) que multiplicando a la dosis absorbida da como resultado una medida directa de la dosis efectiva biológica. Esta dosis efectiva biológica, o dosis efectiva simplemente, se mide en rem (acrónimo de roentgen equivalent man), el cual es igual a la "dosis de radiación" absorbida (medida en rads) multiplicada por un "factor de calidad" que valora la eficacia de cada tipo particular de radiación.
En el sistema internacional de unidades la "eficacia biológica relativa" de la radiación se mide en sieverts (Sv), que es igual a 100 rems.
Para las partículas alfa la "eficacia biológica relativa" puede llegar a valer 20, de modo que un rad sería equivalente a 20 rems. Lo mismo es aplicable a la radiación de neutrones. En cambio para las partículas beta, los rayos x y los gamma, la "eficacia biológica relativa" se valora como 1 por lo que en dichos tipos de radiación el rad y el rem serían equivalentes.
Quelle
Alpha-, Beta- und Gammastrahlen
Je größer der Atomkern eines chemischen Elements ist, desto instabiler ist er. Ab einer bestimmten Größe zerfallen Substanzen deshalb. Sie werden als radioaktiv bezeichnet. Die Zerfallsprozesse können unterschiedlicher Natur sein. Die Strahlung, die zerfallende Elemente aussenden, wird in drei Arten unterschieden: Während Alpha- und Betastrahlung aus Partikeln bestehen, handelt es sich bei Gammastrahlung um elektromagnetische Wellen, ähnlich der Röntgenstrahlung. Allerdings ist ihre Wellenlänge viel kleiner und die Strahlen sind somit extrem energiereich. Alphastrahlung besteht aus positiv geladenen Helium-Kernen, die aus zwei Protonen und zwei Neutronen aufgebaut sind. Betastrahlen bestehen aus Elektronen. Sie entstehen, wenn sich ein Neutron in ein Proton und ein Elektron umwandelt, das vom Atomkern abgestrahlt wird.
Beckerel: Einheit der Aktivität (A)
Eine Substanz ist dann radioaktiv, wenn sie zerfällt und dabei Strahlung aussendet. Um anzugeben, wie stark eine radioaktive Substanz strahlt, benutzt man den Begriff der Aktivität (A). Sie wird in Becquerel (Bq) gemessen und gibt die Strahlungsmenge an, die eine Substanz innerhalb einer bestimmten Zeit durch Zerfall erzeugt. Per Definition entspricht ein Becquerel einem Zerfall pro Sekunde. Je schneller eine Probe zerfällt, desto intensiver strahlt sie also.
Gray: Einheit der Energiedosis (D)
Weiß man, wie stark eine radioaktive Substanz strahlt, sagt das noch nichts darüber aus, wie sich die Strahlung auf den Körper auswirkt. Dafür ist es wichtig zu bestimmen, wie viel Energie von einer bestimmten Masseneinheit des Körpers absorbiert wird. Angegeben wird die absorbierte Energiedosis (D) in der Einheit Gray (Gy), wobei ein Gray der Energiemenge von 1 Joule/kg entspricht.
Sievert: Einheit der Äquivalentdosis (H)
Um die biologische Wirksamkeit der radioaktiven Strahlung auf den Körper anzugeben, benutzt man anstelle der Energiedosis den Begriff der Äquivalentdosis (H). Sie berücksichtigt die Tatsache, dass verschiedene Arten von Strahlen ganz unterschiedliche Wirkungen auf den Körper haben. So ionisiert Alphastrahlung bei weitem mehr Moleküle als etwa Betastrahlen - und richtet deshalb eine größere Zerstörung im Körper an. Daher wird jede Strahlungsart mit Hilfe einer physikalischen Größe gewichtet, dem sogenannten Strahlenwichtungsfaktor. Gemessen wird die Äquivalentdosis in Sievert (Sv). Sie ergibt sich aus der Multiplikation der Energiedosis mit dem Strahlenwichtungsfaktor. 1 Sievert (Sv) sind 1000 Millisievert (mSv). 1 Millisievert sind 1000 Mikrosievert (µSv).
Äquivalentdosis pro Zeiteinheit: Einheit der Strahlenbelastung
Um die Auswirkungen von radioaktiver Strahlung auf den Körper genauer einschätzen zu können, ist es wichtig zu wissen, wie lange eine bestimmte Dosis auf den Körper einwirkt. Daher wird die Strahlenbelastung meist in Sievert pro Zeiteinheit gemessen. Also etwa Millisievert pro Jahr oder Mikrosievert pro Stunde. Die durchschnittliche natürliche Strahlenbelastung liegt in Deutschland bei 2,1 Millisievert pro Jahr, also 0,24 Mikrosievert pro Stunde. Im Schnitt kommen zwei Millisievert pro Jahr durch künstliche Quellen von Radioaktivität hinzu. Den Löwenanteil dazu steuert die Medizin bei
Aktivität zu Äquivalentdosis: Dosiskonversionsfactor
Die Strahlenbelastung von Böden oder in Lebensmitteln etwa wird in Becquerel pro Quadratmeter oder Becquerel pro Kilogramm angegeben. Doch was bedeutet dieser Wert für die Auswirkungen auf den Körper? Um eine Beziehung zwischen Aktivität und Äquivalentdosis herstellen zu können, gibt es den sogenannten Dosiskonversionsfaktor. Er hängt unter anderem von der Art der Strahlung und der radioaktiven Substanz ab, sowie von der Art, wie die Strahlung in den Körper gelangt (Inhalieren, Aufnahme durch die Nahrung). So entspricht die Aufnahme von 80.000 Becquerel Cäsium 137 mit der Nahrung einer Strahlenbelastung von etwa einem Millisievert. Der Verzehr von 200 Gramm Pilzen mit 4000 Becquerel Cäsium 137 pro Kilogramm hat beispielsweise eine Belastung von 0,01 Millisievert zur Folge. Das lässt sich mit der Belastung durch Höhenstrahlung bei einem Flug von Frankfurt nach Gran Canaria vergleichen.
EU-Grenzwerte für Lebensmittel
Nach der Tschernobyl-Katastrophe hatte die EU Grenzwerte für den Import von Lebensmitteln aus jenen Ländern geregelt, die durch das Atom-Unglück kontaminiert wurden. Zusätzlich hat die EU am 26. März 2011 weitere Grenzwerte für Importe aus Japan festgelegt. Sie sind aber höher als die von Tschernobyl. So dürfen Nahrungsmittel aus der EU für Säuglinge, die mit Cäsium 134 oder 137 belastet sind, einen Grenzwert von 370 Becquerel pro Kilogramm nicht übersteigen. Für Produkte aus Japan liegt dieser Wert bei 400 Becquerel pro Kilogramm. Für gewöhnliche Nahrungsmittel liegt der Grenzwert bei 600 Becquerel pro Kilogramm - bei Importen aus Japan aber bei 1250 Becquerel pro Kilogramm.
Subscribe to:
Posts (Atom)